104 research outputs found

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)- DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLADRB1* 04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLADRB1* 04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01+ individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4+ T cells in the peripheral blood of HLA-DRB1*04:01+ RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA

    Quantitative Proteome Profiling of C. burnetii under Tetracycline Stress Conditions

    Get PDF
    The recommended antibiotic regimen against Coxiella burnetii, the etiological agent of Q fever, is based on a semi-synthetic, second-generation tetracycline, doxycycline. Here, we report on the comparison of the proteomes of a C. burnetii reference strain either cultured under control conditions or under tetracycline stress conditions. Using the MS-driven combined fractional diagonal chromatography proteomics technique, out of the 531 proteins identified, 5 and 19 proteins were found significantly up- and down-regulated respectively, under tetracycline stress. Although the predicted cellular functions of these regulated proteins did not point to known tetracycline resistance mechanisms, our data clearly reveal the plasticity of the proteome of C. burnetii to battle tetracycline stress. Finally, we raise several plausible hypotheses that could further lead to more focused experiments on studying tetracycline resistance in C. burnetii and thus reduced treatment failures of Q fever

    Algal MIPs, high diversity and conserved motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes.</p> <p>Results</p> <p>A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one <it>MIP </it>gene but only a few species encoded MIPs belonging to more than one subfamily.</p> <p>Conclusions</p> <p>Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca<sup>2+ </sup>gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.</p

    NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation

    Get PDF
    N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF's cellular impact was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary, our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac machinery appears complete since all the major substrate groups in eukaryotes are accounted for

    The legal framework for financial advertising:curbing behavioural exploitation

    Get PDF
    Policy makers and behavioural finance scholars express growing concern that marketing practices by financial institutions exploit retail investors’ behavioural biases. Investor protection regulation should thus address these marketing practices and include mechanisms curbing behavioural exploitation. That raises the question whether the marketing communications regime of the new Markets in Financial Instruments Directive can live up to this demand. This article develops a regulatory model that integrates behavioural finance insights into the new marketing communications regime. It then determines how regulatory authorities can apply this model when they interpret and apply specific regulatory requirements. It demonstrates how a regulatory authority or a court can translate empirical behavioural finance research findings into legal arguments when assessing whether marketing practices can significantly distort a model investor’s decision-making process. The article further establishes that the detailed requirements imposed on investment firms by the new Markets in Financial Instruments Directive are necessary in order to protect investors from behavioural exploitation. Finally, the article submits policy proposals that aim to protect investors more effectively from behavioural exploitation

    A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif

    Get PDF
    Ustilago maydis is a biotrophic fungus causing corn smut disease in maize. The secreted effector protein Pit2 is an inhibitor of papain-like cysteine proteases (PLCPs) essential for virulence. Pit2 inhibitory function relies on a conserved 14 amino acids motif (PID14). Here we show that synthetic PID14 peptides act more efficiently as PLCP inhibitors than the full-length Pit2 effector. Mass spectrometry shows processing of Pit2 by maize PLCPs, which releases an inhibitory core motif from the PID14 sequence. Mutational analysis demonstrates that two conserved residues are essential for Pit2 function. We propose that the Pit2 effector functions as a substrate mimicking molecule: Pit2 is a suitable substrate for apoplastic PLCPs and its processing releases the embedded inhibitor peptide, which in turn blocks PLCPs to modulate host immunity. Remarkably, the PID14 core motif is present in several plant associated fungi and bacteria, indicating the existence of a conserved microbial inhibitor of proteases (cMIP)

    MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape

    Get PDF
    Major histocompatibility complex class I (MHC-I) molecules play a crucial role in immunity by capturing peptides for presentation to T cells and natural killer (NK) cells. The peptide termini are tethered within the MHC-I antigen-binding groove, but it is unknown whether other presentation modes occur. Here we show that 20% of the HLA-B*57:01 peptide repertoire comprises N-terminally extended sets characterized by a common motif at position 1 (P1) to P2. Structures of HLA-B*57:01 presenting N-terminally extended peptides, including the immunodominant HIV-1 Gag epitope TW10 (TSTLQEQIGW), showed that the N terminus protrudes from the peptide-binding groove. The common escape mutant TSNLQEQIGW bound HLA-B*57:01 canonically, adopting a dramatically different conformation than the TW10 peptide. This affected recognition by killer cell immunoglobulin-like receptor (KIR) 3DL1 expressed on NK cells. We thus define a previously uncharacterized feature of the human leukocyte antigen class I (HLA-I) immunopeptidome that has implications for viral immune escape. We further suggest that recognition of the HLA-B*57:01-TW10 epitope is governed by a 'molecular tension' between the adaptive and innate immune systems

    DebugIT for patient safety - improving the treatment with antibiotics through multimedia data mining of heterogeneous clinical data

    No full text
    The concepts and architecture underlying a large-scale integrating project funded within the 7th EU Framework Programme (FP7) are discussed. The main objective of the project is to build a tool that will have a significant impact for the monitoring and the control of infectious diseases and antimicrobial resistances in Europe; This will be realized by building a technical and semantic infrastructure able to share heterogeneous clinical data sets from different hospitals in different countries, with different languages and legislations; to analyze large amounts of this clinical data with advanced multimedia data mining and finally apply the obtained knowledge for clinical decisions and outcome monitoring. There are numerous challenges in this project at all levels, technical, semantical, legal and ethical that will have to be addressed
    corecore